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Abstract — The in-plane microbuckling of a fully bonded cross-ply laminate composite is considered.
The problem is formulated by treating the composites as a single phase inhomogeneous continuum.
The fiber and the matrix are accounted for by spatial variation of the moduli of the two phases,
The variation of material propertics is expressed by a Fouricr serics expansion in the coordinate
directions. Similarly the buckled mode shapes are thought of as three-dimensional Fourier series
that satisfy the governing differential equations. These equations are obtained by superposition of
small displacements on the finite pre-buckled clastic state.

Qur results corroborate the results of Lagoudas er al. (1991, J. Appl. Mech. 58, 473-479) which
deals with a two-dimensional plane strain situation. In the 3-D case, the cffect of ply layup on
buckling strength under uniaxial and biaxial compression is determined. The solutions for the
critical condition determined by different modes of buckling and certain physical parameters under
biaxial compression are also studicd.

INTRODUCTION

Due to their high strength to weight ratio, composites are being used more frequently in
lightweight structures, such as space stations, aircraft, submarines, etc. A lurge amount of
rescarch has been performed to construct theories of the behavior of composites. However,
an area where the traditional approach has been found to be inadequate is the compressive
strength of composite structures, where the compressive failure might occur as both long
and short wavelength buckling. A well known feature of the microstructural compression
failure is the occurrence of microbuckling and subscquently sudden reduction in the effective
compressive strength of the composite. It is widely believed that the fiber buckling plays an
important role in the failure phenomenon.

Rosen (1956) considered the stability of a two-dimensional array of layers of fibers
bonded to uan elastic matrix. An important result that follows from this analysis is that for
low fiber volume fraction the extensional buckling mode is the dominant mode of buckling,
while for high fiber volume fractions (> 20%) the shear buckling mode is predicted. Chung
and Testa (1969) modeled the fibers as beams in an elastic foundation. Similar buckling
modes and failure loads to those in Rosen’s model are indicated in their analytical and
experimental results. Recently, Swanson (1990) considered a 3-D model that includes the
effect of resistance of the adjacent plics on the buckling strength of laminas with axial fibers,
He indicated that the apparent strength of the axiul plies depends on the total laminate
layup and that the adjacent plics provide additional shear resistance to fiber microbuckling.
Lagoudas et al. (1991) developed a 2-D microbuckling model that treated the composite
as a single phasc and as an inhomogencous clastic solid. The influence of imperfections is
modcled as fiber waviness with a free wavelength parameter. Their results show that
compressive strength is substantially lower than predicted by Rosen's analysis. This new
approach to microbuckling is also the basis of this paper. It is known that there are
situations when in-plane microbuckling requires three-dimensional modeling such as the
effect of adjacent layers or various patterns in the periodic arrangement of the fibers. In
this study, a three-dimensional structure, i.e, composite plate composed of a number of
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Fig. [{a). Configuration of the structure,

thin laminas, is considered. An clement cut from this kind of structure is shown in Fig.
1{a). As scen from this figure, even if the dimension in one of the three directions is tinite,
in the X', direction say, at the micro-structural scale, local buckling takes place at distances
far from the boundary. Thercfore, for compressive strength primarily the axial Young's
modulus needs to be represented as a variable quantity, The Fourier series with a wavelength
cqual to the average spacing between fibers is used to take into account the periodicity of
the microstructure. In this model a fiber is replaced with o rectangular strip of the same
width as the ply and same area as the fiber. The structure consists of bonded taminas with
0uand 90 fiber orientations. The occurrence of microbuckling in the V. direction s prevented

Fiber axis
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Fiber axis Fiber axis
Case | Case 2
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Fig. 1{b). Modes of buckling for cases 1 -4 given in Table { [front view projection of Fig. )],
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by the adjacent plics. The weak planes are the planes of the laminas to which the buckling
modes of fibers are confined. It is mentioned here that the phenomenon of composite
delamination is not considered in this paper because it requires the measurement of an
interfactal bonding parameter (interface strength) and in some cases [e.g. Steif (1988)] the
extent of initial debonding. which is not the topic of interest in the present analysis.

Results of the present analysis show that under certain conditions critical strain of the
simplest possible approximation reduces to Rosen’s classical results (1956) for compressive
buckling strain of fibrous composites in the shear buckling mode. Moreover. it shows that
in the absence of cross plies the critical strain depends on the assumed fiber imperfections.
The minimum value of the compressive strength occurs in the limit of vanishingly small
wavelength of imperfections. Tt is also observed that the resistance to fiber buckling of the
composites can be improved by increasing the sheur modulus of the matrix. Our results
also show that under uniaxial compression additional resistance to fiber buckling is provided
by adjucent plics as the thickness of these plies increases which was also found by Swanson
(1990). However, it is observed that for prescribed nonzero strain in one direction, the
buckling strain in the other direction will increase withinan interval and thereafter decreases
with the thickness of these laminas with transverse fibers.

BASIC FORMULAE

We consider a three-dimensional structure consisting of laminas with 0 and 90" fiber
orientations with respect to the vertical as shown in Fig. 1(a). The Cartesian coordinates
of a material point of the continuum are represented by X, X = (X, X, X'1)". In the absence
of boady forces the equation of cquilibrium is (Malvern, 1969),

V- [T-Vx| =0, (1

where Vs the gradient operator in the Cartesian coordinate frame X; x is the position
vector after detormation; T is the second order Piola Kirchhoff stress tensor. The six
components of the stress tensor T are denoted by o which is related to the Green -Lagrange
strain ¢ through an orthotropic lincar clastic Hooke's taw that defines the material behavior
(Appendix A).

For a periodic matrix structure shown in Fig. [(a), the variation of Young's moduli
E,yand £y, can be expressed by the following Fourier series (Appendix B):

. ) , . o, nnlX,
E (X0 X)) = EN(ryr) + EY (XX =ry/r) +ES — ES (X)) Z 2" cos S (2a)
na | 2
PR e g " , y .2 &
E”(.\l..\:)=['-n(‘\l)(l':/l':)*‘[«'u(l—I‘z/r:)+[E\j(z\/1)— '33] Zd,, COs . - (Zb)
nal 2

where the superseripts v and h refer to the laminas in which the fibers arc oriented in vertical
(Y1) and horizontal (X)) directions respectively; £Y, and E%, are the effective Young's
moduli of the laminas with vertical tibers and of horizontal fibers and are assumed constant.
Also £% (X) and £5%,(X)) are the axial Young's moduli of the laminas with the horizontal
and vertical fiber directions and can themselves be represented as Fourier series in the X
and X, directions respectively

- . < . - (% Aty
EY (N = [Erird + En(l = fr)]+ (Ec— En) Y 2t cos A
n=1 R}
‘ nnX,
= D%+ Y D}cos . (3a)
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ot X
ENu(X) = [E(ri/r)+ Eq(U=r/r)]+(E—Eq) Y. 1£,"cos’%~'
LER l
< X
E§C3‘+ZC:‘COS%~’~. (3b)
LER] H

Here 2" = (2/nn)sin (nnr)/r). i = 1.2.3; E; and E,, are the Young's moduli of fiber and
matrix respectively. As shown in Fig. 1(a), we note that the spacing ratios r/r, and ry/r,
denote the fiber volume fractions C} and C} of the layers with vertical and horizontal fibers,
respectively. Also, 2r% and 2r, are the thickness of the laminas with vertical fibers and the
distance between the midpoint of two plies with vertical fibers separated by one ply with
horizontal fibers. respectively. Thus. the thickness of the layers with horizontal fibers is
given as (2r,—2r%). The ratio r'/r, is then the normalized thickness of the lamina with
vertical fibers that is present in one period (2r.) in the X, direction.

Prior to buckling. the body is assumed to be in the state of plane strain with 4, = 11,(X)
and 1y = u3(X;) being the only nonzero components of displacements.

Equilibrium requires that v, = —a, X, and u; = —a;X, where a, and a, are constants
assumed to be positive to signify compression. Superimposing the incremental displacement
U. U= (U,.U;, U,), upon the pre-buckling displacement field, we have

”i = "(’;:Y[ +5U§(‘YI- 'X’Z- 'Xyl)‘ (43}
1y = eUAX). X3 X5 (4b)
iy = —a Xy +8U3(X L X X)), (40)

where £ is @ small parameter. The Green-Lagrange strain components are determined to
be

En=(=ay+ ai) +e(l —a U, + 007

‘ 0
= —hte(1=20)" 20, 40D, ()= . i=123 (5)

0X,

3y = el +0(). (5b)

ey = (—ay+a) +e(l ~a)Us 3+ 0@ = —d+e(1 =2d)'2 U524+ 0D, (5¢)

26y = £[Us (1 =2d) 2 U L1+ O3, (5d)

21’2[_\ = {:[(l “‘2:’?}§’2U(‘3+(l “‘2(1)’ 2U3';]+0(52), (SC)

2£|3 =l':[(l”2[));"3{];‘3+U2‘|]+O(£:). (Sf)

Also the position of a material point is given by

Xx=u+X = Ax+:U, (6

where

A =diag[(1 =2 1,(1 =2d)"7)
and a; = 1-(1-20" and a,=1-{1=2d)"". For 0<(h.d) <! we have 0<
{a,.a;) £ 1. We substitute eqns (2)-(6) with the components of the stiffness matrix L
defined by Appendix A into eqn (1) and note that the zeroth order equations arc identically
satisficd while the first order equations yield

U =0, )

where 77 is a 3 x 3 symmetric matrix operator that is defined in Appendix C. Since the
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occurrence of microbuckling in the X.-direction is prevented by the adjacent plies. we
assume [, = 0. The weak planes are the planes of the laminas to which the buckling modes
of the fibers are confined. Based on the above assumption eqns (7), in the X, and X,
directions. become

.U, +2,,U;s =0, (3a)
y'jq(/'|+-(f,“U3=0, (Sb)
while in the X", direction we.have
(’ ¢l (BU‘)
e | = ()‘
ex ("' éx, +Ks X, 9

where
Kl = (I _2;,)1 :(G|2+E|:)-
Ki=(1=2d) *(Gsr+ Ex).

The nonzero incremental displacements are assumed pertodic in the X, direction as:

: X,
U= ¥ dcos T2 (10a)
=0 2
Y’
= ¥ B cos ~’3‘~-~ : (10b)
-4 .

with the cocllicients A, and B, periodic functions of X, and X'y which temporarily are not
upli(.illy stated, We noted that (9) together with (10) imply existence of potential functions
VAX L X0 i= 12,3, ... such that

W

Ll i=1,23...., I
oy, =h '3" an

where A, and B, remain unrestricted. Substitution of (10) and (11) into (8) leads to

jnX,

LU+ 20Uy = Z C, cos == =0, (12a)
j=0 -
an,
LU+ 25U, = ZDCOS = (), (12b)
j=0 r:

where the coeflicients Cand D are defined differently forj = 0andj 2 1. We haveforj = 0:

Co = B0 (X)) Ag 0+ 0(X ) Ay + b8y 0

+: t'\xﬂn(y)ziﬂ) waty 32 Kxﬂu(x)zfi’)y 3 =0, (12a)

nmi

D‘, = ﬂu(«"\)BuJ] +ﬂ)* X’ )Bn n+h|\f‘n1\

— K 15X Z £V, 0 = K Ba(X) Y 2PV, =0, (12b)

nwt

and forj 2 |
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C = ﬁl}("/})zi:,fl()‘l 1 +ﬂu(Xx)1;:)A0.33+(K3.3| 1(X5)

=K bV, i+ KBio(XDV, 535+ 3K, Z {2 lu(j—n=1

n=1

+u(n—j— 1}l _5/n)+x:/:)+n>][ﬁll(‘x’3) Visii+8140X) Vn.n}]:‘

iy . .
—K}bu(—) F.a=0, j=123....,

r; (128:)
D;_E /3”(,(‘)1;:’804, I +ﬂ34(X1)1;:)Bo.33 — (K B::(X))
"K}[’M)Vj.xn—Klﬂ}l(XJ)V/.l||—%Kl Z {[1;(/:1"1[“(1.—"“ 1)
n=\
+u(n—j—= D1 =0,) + 2% 1B (X)W1 + B D V0]
N in ¥

+A|b3_‘<_> V,'_l =0. .=l.2.3....

2 (12b,)

Here the subscript |j—n| has the usual properties that [j—n| = j—n for j = n and
|j—n| =n—j for j<n; the function u(j—n) is defined as w(j—n) =1 for j2n and
u(j—n) = 0 for j < n;and J,, is the Dirac delta symbol. The coeflicients §,,.ff,,..... and
his. byyand by, are given in Appendix D. It is noted that the coeflicient functions C; and
D, must identically vinish. Vanishing of Cs and Ds provides two infinite sets of equations.
Each member of these sets is to be further expanded as a Fourier serics in the remaining
two dircctions, i.c. X, and X,. Obscrving (12) we find that these equations admit more
symmetrics in solutions in the X\, X, plane than the shear and the extensional modes
observed in the two-dimensional plane strain case. These symmetrics can be expressed in
terms of oddness or evenness of A, Byand V,, n = 1,2,3,..., as functions of X', and X,
and can be given in tabular form. There are four possible symmetries as given in Table |
and illustrated in Fig. 1(b).

Correspondingly, the functions A,, B, and V, can be expressed in Fourier sine or
cosine series that reflect those symmetries. [t is noted that the mode shapes assumed in
cases | and 2 are analogous to the modes of buckling introduced by Lagoudas et af. (1991)
for compressive strain of fibrous composites in the shear and extensional buckling modes
respectively. The buckling modes of A, 8, and V, for cach case are assumed to be:

A=Y S AN (13a)
t=fl k=)

By=Y Y Buol. (13b)
t=afl k=0

V=Y S Vien. (13¢)
rall k=0

where the superscript m, m = 1,2,3,4, is the number of the corresponding casc; A, By
m

and V7, and correspondingly Wi, ¢x and ¢ arc the amplitudes and the mode shapes of
Ao, By, and V,, respectively, for the cases 1-4 given by Table 1. Here ¢ and &,

Table |
Casc | Case 2 Case 3 Casc 4
X, A X, AW X, X, X, X,
Ao even odd odd cven even cven odd odd
By odd even cven odd odd odd even even

¥, even even odd odd even odd odd cven
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ik =0,1.2...., %, are the number of the harmonic functions in the X, and X, directions,
respectively. The harmonics W5, ¢}, and ¢ are given as follows:

1 fK.Y; . kﬁX} 1 fﬁX kKX3 P f}TX; . k?{X:;
¥! = cos — sin . @) =sin— . @x = cos ~——sin .
r rs T, r; ry 3
" . I.TLY| kﬂX} . inX. . kﬂX} 5 . iﬂXl . kT[X3
Y = sin — cos . Qi = COs ——sin , @i =sin——sin .
r rsx ry Ty ry r;
. inX, knX, y . imXy | knX, s inX, . knX,
¥ =cos ¢os ¢} =sin sin . ¢ = cos ——sin .
r Ts Ty ry Ty rs
R'X| krnX, TIXl knX X| knX,
Wi = sin — sin -, rp,i = 0§ —— CO$ 3. o) = sm o CO§ ——= , (19)
r ry r ry r ry

Substitution of (13} into (12}, after some manipulations, results in the following algebraic
system:

M"a=0, m=12134, (15)

where M” and a are the coefficient matrices containing the unknown strain parameters 4
and o and the amplitude vector, a = (4. By, V3)'. respectively. A nontrivial solution a of
{15} exists when

IM™] =0, m=123.4. (16)

The critical valuc of the compressive strain b for prescribed o (or of d for prescribed b) can
be obtained as the smalicst positive root of (16).

Turning attention to {12) we identify the leading approximating system as the two
equations Co =0 and Dy = 0 with only the functions A, and B, being present and all
¥, = 0. This system is:

Co =X +8::(X ) Avsn +513Bo iy =0, (17a)
Dy = f3(X3)Boia + 535X ) Boss +H34010 = 0, (17b)

which reduces to the two-dimensional system considered in Lagoudas er «l. (1991) by
setting either vy = ryand b= 0orry=0and d = 0.

The simplest possible approximation to a solution of (17), for each case, is obtained
when the terms with either i =0 and k =1 or i = | and k = 0 are nonzero and all other
Az and B, are set to zero. In that case the following possible solutions are obtained:

Case 1
Either
{(1=20YG s —BE ; —d[ES(1 =1y jr) + 1C¥r4r.)} ( )Ag; =0 {18a)
or
{(1 =2d)G = dE,y—b[EY An/n)«}-'D“‘(!—n/n)],( )Bm 0. (18b)
Case 2
Either
{(1-3b)[ ‘2:(":/*:)4-%05(?"f':/f:)]*dEn}(;%):Am =0 (19a)
or

SAS 29:24-H
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(U =3d)[ES (L =rijr) + §C3r':/r:]-b5n}(r£]>:3m =0. (19b)
Case 3
Either
ul —2b)Gu—bEn-d[E'E;(1-—":/f:)+§C3(":/rz)]}(r£3):f4m =0 (20a)
or
{(1=3B)[EN (r/r) +1 S(l—r':/fz)]—dEu}(rEjA.n =0. (20b)
Case 4
Either
(1 =3d)(ES(1 =rifry) + §C5("':/’:)]"b5n}(%)1301 =0 (21a)
or
(1 =2d)G\\ = dE, —BIEY (Fi/r:) + D31 —r':/r:)]}(r’f'»):fsm =0.  (2lb)

It is noted that in the absence of the plies with horizontal fibers (r5 = r;) and without
compression in the X, direction (A = 0) cqns (18a) and (20a) coincide with Rosen’s classical
result (1956) for compressive buckling strain of fibrous composites in the shear buckling
mode. That is, they reduce to

, 2GH Gm
d=— - o
Ch EGU-C)

where the subscripts fand m denote the fiber and the matrix, respectively. Similarly, without
the plies with vertical fibers (r3 = 0) of the composite, the same buckling strain of shear
mode of fibrous composites as derived from Rosen’s analysis (1956) can be obtained from
(18b) and (21b) when compression is applicd in the X, direction only (« = 0). As mentioned
previously, the vanishing of the coefficient functions C; and D,, j=0,1,2,..., in (12)
provides two infinite sets of equations in the X, direction. Thercfore, not only are the larger
values of i and k& of (14) taken into account (more nonzero terms in X', and X, directions)
but a higher value of j is used in (12) (more scts of equations). It should be noted that the
potential functions V, are not present in the leading approximating system [j = 0; eqn (17)]
but they appear in the system for j > 1. Therefore, the approximating system for j = |
consists of the four equations Cy = 0, Dy =0, C, = 0and D, = 0 with 4, Byand V, being
present, and is given by :

Co =B (XD Ao +h12(X)Agsy+b13Bos
+ KB (XY 0+ HKGB (X )2V 55y = 0, (23)
Do = B3 (X3)Boyi+ B1:(X 1) Boss+biyAais
= 1K By (X )PV = EK (X )2V = 0, (23b)
Ci = BralX )2 Ao +1a(X )27 Aoy + (K (X))
— Kb )WV i+ KB (X)aS Vg0 + KB (X )V s
T

+%K.\ﬂu(xl)i(lz)Vl.m—KJ’N:(") Vi =0, (23¢c)

5
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D = B1:(X;3)2\" By 3y + B34(X )2\ By 3y — (K B3:(X)

—.K.‘bIJ)Vl.I.U_%Klﬂ33(X3)1‘Z:)VI.I [ _K’IBJI(/"J)L,I.HI

hl » - n : i
— 1K Bra(X )b |.|33+K|b3:<—> Vii=0. (23d)

r;

It is mentioned here that the results reported in this paper are based on the system
given by (23). The values of / and & in the harmonic functions W§. ¢ and ¢%. with
m = 1,2.3.4 of the functions 4,. 8, and V|, respectively. are taken into account up to and
including 1. Also. since the lowest modal number for sine function is 1, then (23) becomes
a8x8.6x6,7x7, and 7x 7 algebraic system for cases |-4 respectively. The convergence
of the solutions is tested by comparison with higher order systems j > 2. Only negligible
differences were observed and it was decided to stop the calculations with j = 1.

It is noted that when the plies with horizontal fibers are absent (r> = r,) the terms

in (12) are zero which means that the functions 4, and B, are not present in equations
C,and D, for j 2 1. Thus, eqns (12a,) and (12b)) in the 2-D case become independent of
V,. This system thercfore represents the behavior of the 2-D case and all terms involving
V., disappear in this case.

NUMERICAL RESULTS AND DISCUSSIONS

As mentioned before, the critical strain of the one term approximation with different
modes of buckling is given by (18)-(21). Under certain conditions, as mentioned previousty,
some of those equations reduce to Rosen’s classical results (1956) for compressive buckling
strain of fibrous composites in the shear buckling mode.

For higher order approximation, (16) is solved numerically with given values of 4
representing compression in the X, direction to obtain critical compressive strength of the
composite in the X, direction.

To study the special 2-D case (r5 = r,) with uniaxial compression in the X, direction
(h = 0), we note that in the absence of cross plics the spacing parameter £, becomes a free
parameter and can be interpreted as a measure of wavelength of imperfections (Lagoudas
et al., 1991). In that case, the effect of imperfections, normalized as the ratio ry/ry, on the
critical compressive strain d for various modes of buckling given by the symmetry cases |-
4 is shown in Fig. 2. In this figure, CY is sct to be 0.5 and the propertics of glass (£, = 72.3
Gpa, v¢ = 0.22) with two choices of epoxy, G, = 1.306 Gpa, v,, = 0.302 (solid lincs) and
G, = 1.0815 Gpa, v,, = 0.35 (dashed lines) are selected. This figure clearly shows that in
the two-dimensional case the critical strains obtained from cases | and 2 coincide with cases
3 and 4 respectively showing that only shear and extensional modes of buckling are present.
It is also observed that the resistance to fiber buckling of the composites can be improved
by increasing the shear modulus of the matrix. As reported in Lagoudas et al. (1991), the
minimum value of critical strain « occurs in the limit of minute imperfections, i.c. ry/r
tends to zcro. The detailed discussion about the 2-D case can be found in Lagoudas et al.
(1991).

Considering the 3-D case, the propertics of glass/epoxy system (E, = 72.3 Gpa.
ve=0.22, E, =292 Gpa and v, = 0.35) is used. It is noted from the definition of the
normalized spacing ratios ry/r, and r,/ry in (23) that we can write ry/r, = (C}/CH(ry/r")
and ry/ry = (ry/r)(ry/r /CE)(ryry), where 0 € (CY, CF) < 1. This allows us to vary certain
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Critical compressive strain, d
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Normatized wavelength of imperfections,r3/ri

Fig. 2. The effect of normalized wavelength of imperfections v ry on critical compressive strain
forr,=r. b=0and C} = 0.5

physical parameters while keeping the remaining parameters fixed and thus determine the
effect of variation of these parameters upon the critical compressive strain,

To study the occurrence of the modes with various symmetries during buckling the
critical strain  is plotted against the critical straim & an Fig. 3. In this figure, the values of
parameters used are Cf = (P =05, ¢y =r% ry= 10 and = 0.5, and therelore
rijry = 0.1, It is observed that at the beginning,  is @ monotonic decreasing function of .
Also, as b increases from zero the buckling occurs cither by the symmetry case 1 or 3 and
these coincide for a limited inverval of b, Thercatter, cases | and 4 coincide and determine
the critical condition,

To investigate the cffect of ply fayup on the solutions, critical strain  versus g, in
which g = (ry—r3)/r,. for various values of b are plotted in Figs 4 6. In those figures

Ci =Cr =05, r,=r, and ry/r, = 1.0. The strains given in the horizontal direction in
035
o Case |
x Case 2
a Cose 3
o3~ e Case 4

015

010

Critical compressive strain, d

Q0%

l’i 1 | | L It
o} 005 010 QIS 020 02%5 030 035

Critical compressive strain, b

Fig. 3. Critical strain d vs critical strain A with the paramceters r, = 057, OV = Cf =05, 7, = )
and £, = 10r).
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Critical compressive stroin,d

005

Fig. 4. Buckling strain dvs pforh =0, C; = Cf = 0.5.r, =ryand ry = r,.

these figures are, respectively, b = 0. 0.04 and 0.07. Tt should be noted that perfect bond
between cach kiyer is assumed. Also, g denotes the normalized thickness of the lamina with
horizontal fibers that is present in one period in the X, direction. [t is seen from Fig. 4 that
under uniaxial loading condition (5 = 0) the buckling strain determined by cither case | or
3. increases with g That is, additional resistance to fiber buckling is provided by adjacent
plics as the thicknesses of these plies increase in the X, direction. This phenomenon was
also found by Swanson (1990). However, as shown in Figs 5 and 6, when the strain b is
nonzero, the buckling strain  increases within an interval of g and thercafter decreases
with g. This observation is opposite to the result obtained by uniaxial compression as shown
in Fig. 4.

The effect of fiber volume fraction of the laminas with horizontal fibers on the critical
striin of the structure in the vertical direction is shown in Fig. 7. In this figure critical strain
d is plotted as a function of €} with a fixed value of b, The parameters used in this figure
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Fig. 5. Buckling striin dvs pfor b =004, C} = CF =0.5.r, =ryand r, = r,.
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Fig. 6. Buckling straind vs g for b =0.07, C; = C} = 0.5. ¢, =ryand ry = r,.

arc h =0, C; =05, ry=0.5r,, ry = 10r, and ry = r,. The result shows that the critical
compressive strain  monotonically increases with ) and that buckling is governed by
cither case 1 or 3 both of which predict almost the same value.

CONCLUSION

The Fourier-series-based analytical approach appears to be capable of analysing the
occurrence of microbuckling in cross-ply composite laminates. The difliculty of solving
separate problems in fiber and matrix phases and matching conditions ucross the interfaces
is overcome. However, this has been achieved at the expense of assuming a rectangular
periodic arrangement ol matrix and fibers at the microstructural level. Computationally
the method is efficient and conveys rapidly. The numerical results have the expected behavior
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Fig. 7. Critical strain d vs C} for b =0, C; = 0.5, r, = 107, ry = 0.5rand ry = r .



Fiber buckling in 3-D composites 3181

and as shown in prior investigation (Lagoudas et al., 1991), agree substantially with
experimental results.
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APPENDIX A
Hooke's law is expressed as
o = Lz,
where
0=(0,,,0:1.0,,03.7,u0,3)".
€= (B BBy 24::|.2‘:I,|- 2‘:|2)r'
and

L, Odu,  Ou Ou, L
O R R BT RIED

Here u, are the components of the displacement vector u defined by u, = x,— X|. Also

-y

r | "
Yy Vs
= —-—-= 0 0 0
El EI El
Uovy
E E, 0 0 0
: 0 0 0
E,
L=S"!= |
symm. -— 0 0
y Go
1
-— 0
G
1
L Gy
" E,, E,, E, 0 0 07
E E,, 0 0 0
- Ey O 0 0
symm. Gy O 0
G, O
L Gl!—

where S is the compliance matrix for an orthotropic clastic medium.
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Fig. Al. Fourier series representation.

APPENDIX B

Defining /(x) as an even periodic function (see Fig. Al) it can be expressed as a series of cosine terms:

f0) = Lt F_ /. cos ":TY (B1)

where
fo = 2lbd+ (h—d)a] = 2bd + (2h = 2d)a = shaded arca, (BY)
/= ,:’J:’ /{x)cos ,f’;'f‘, dy = 2(,;;11) sin ’-x;d. n=1213,... (B3)

Referring to Fig. Ha), let £, be the axial Young's modulus for the laminas with vertical fibers, which is & periodic
function in the X, direction, so that we hitve from (Bl) (B3):

S ' : Y
BV, = [ﬁ.‘,(r—')+h‘,"(l - ’—1)]4-([:}—&,,) ¥ 2 cos TR (B4)
ry ry ry

=t

Similarly, let £, be the axial Young's modulus for the layers with horizontal fibers then

’ . X
EY (X)) = [L(: ‘»)+Em(l —r\/r;)]HEr—E...) ¥ 4V cos (B5)
' net 3
We now consider the composite which is also periodic in the X, direction :
N - . y g h . N h - o IITL\,_
E (N X)) = EV () + EN (X ) =ryirs) +[EY, = ET (X)) Z“n cos . (86)
el 2
e v N ry N . . h e nn X,
EgY, X, = ..(X.)’-— +EN(U=ryir ) +HES (X)) - ES) Y 2P cos . (B7)
2 aal 2

where

2 nnr,
= —sin—, i=1.23.
3
2r r,

4

APPENDIX C
The differential operator in eqn (7) has the following components
2’! i '?’ [N Y [

L=y Fn L)
VST ST ST
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. By

¢t
(K] —[“-3[’)E|| dEl\] +[(l—’h)G|‘—(bE| +d£ V)]. +[“-’b)Gn—(bE|!

a2

C
¢ — -9 [ . S ——————
22 = 1=20" 3G 4 Evo) sy
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APPENDIX D
) nY‘
Bo(X) = [{1L=30EY ~dE, ]+ (L =351 =rSr,) Z D‘eos—-— Z B cos
n=0
o . mt,\’.
B X)) = (1 =2P)G\, ~hE, , —dE'\| +d(r'y/ry) Z C‘cos Z B :co
n=(

BoXy) = [(l —3B)ES - 1D - Z D cos ,—] Y fiucos *)“('
i)

=i}

. X - X
Bra(X)) = «d[(!-cr.—e"..u ¥ Cheos "’i'] = Y Macos '":
nel !
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L] 1 -l I
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1

P a0 3
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n=1 n=1
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